Medusahead: The state of the weed

An overview put together by Theresa Becchetti, Josh Davy and Elise Gornish

Overview

Medusahead background Invasion dynamics Control

Current Research

Overview

Medusahead background

Invasion dynamics
Control
Current Research

What's in a name?

History

History

Overview

Medusahead background

Invasion dynamics

Control
Current Research

Precipitation

Soils

Thatch

Seed Dispersal

Decreased Habitat

Thatch

Fire

Competition

Decreased Grazing

How to combat?

Understand medusahead growth

Medusahead Growth Stages

V2

V3

Medusahead Growth Stages

R4

R5

Medusahead Growth Stages

Seed kernel development.

R7

R8

R9

M10

Phenology

- -Most seeds rapidly germinate in the fall
 - Practices that limit a single year of seed production can drastically reduce plant numbers
- Matures and stays green later than most annual grasses
 - Often doesn't mature until May

Overview

Medusahead background

Invasion dynamics

Control

Current Research

How to control medusahead

- Burning
- Herbicide
- Competition (seeding)
- Grazing
- Mowing

Burning

- Must be dry enough to carry fire
- Must be early enough that seeds have not dropped from the head

Fire is not great at controlling seeds on the soil

surface

Burning

- Advantage
 - Nearly eliminates medusahead plants
 - Does not harm clover, filaree, or perennial grasses
- Disadvantage
 - Grazing is very limited the next year due to very low forage production
 - May be three years before normal production returns
 - Most desirable annual grasses are also lost
 - Slender/wild oat is the exception
 - Often by the time forage production returns to normal, so does the medusahead cover

Herbicide overview

- Aminopyralid (milestone) before germination
- Aminopyralid in the spring
- Grass selective herbicides
- Glyphosate

Aminopyralid before germination

- Effective, but expensive \$2.85/ounce @ 14 oz/acre
- Use 5 oz product/acre (product = 2 oz amino + 0.8oz chlorosulfuron)
- A study at Red Bluff suggests that this approach lasts about 4 yrs
- The second year after use, hard seeded clover and filaree returned

Aminopyralid in the spring

- Still being tested
- Low rates are acceptable
 - 2-4 oz/acre possibly
- Does not kill plants, but prevents seed production

Grass selective herbicides

Clethodim
Arrow 2EC

Rate: 4 to 8 fluid oz product/acre (1 to 2 oz a.e./acre)

Cost (2013)1: \$120/gal (~\$4 to \$8/acre)

Timing: Early postemergence

Safety on established perennial grasses: May vary by species and growth stage. Older, established bunchgrasses should be safe but may show injury. Annual grasses will be severely injured or killed.

Plantback interval: None

Grazing restriction: Depending on the type of application, label restrictions vary all the way

from no restriction to "Do not graze." Check with your county before use.

Remarks: Registered for use on noncrop, fallow ground, and native prairie restoration pro-

jects. Check with your county to make sure your intended use is permitted.

Fluazifop
Fusilade DX

Rate: 24 fluid oz product/acre (6 oz a.e./acre)

Cost (2014)²: \$170/gal (~\$32/acre)

Timing: Early postemergence

Safety on established perennial grasses: May vary by species and growth stage. Older, established bunchgrasses should be safe but may show injury. Annual grasses will be severely injured or killed.

Plantback interval: None

Grazing restriction: do not graze for 12 months after application

Remarks: Registered for use on noncrop and fallow ground; 24(c) registration for wildland in California and Oregon. Check with your county to make sure your intended use is permitted.

Glyphosate

Glyphosate
Roundup Pro,
Accord XRT, and
others

Rate: 0.75 to 1 pt product (41% glyphosate)/acre (4.5 to 6 oz a.e./acre) for early-season selective control in shrubland or other perennial systems; 1 to 2 qt product/acre (0.75 to 1.5 lb a.e./acre) for late-season, non-selective control.

Cost (2014)¹: \$16/gal (~\$2/acre for early-season treatment, ~\$4 to \$8/acre for lateseason treatment)

Timing: For selective control in shrubland, apply postemergence in spring after all seedlings are up and before heading; the tillering stage is ideal. For late-season, non-selective control, apply to rapidly growing plants before seeds are produced.

Remarks: Glyphosate is a non-selective herbicide with no soil activity.

Spray when individuals are in the R5-R7

stage.

Roundup herbicide treatments

Competition/seeding

Seed desired grasses

- Weeds must be controlled the year before planting (herbicide is best)
- Retreat weeds the fall of planting with grazing or burning
- The more ground prep, the better it works
- Skipping a step = total failure

Seed desired grasses

 Tilling and drill seeding show best success to increase seed to soil interface

Pick seeded species wisely

- Match the plant to soils
 - E.g. Don't plant Harding grass in shallow soil, plant Berber orchardgrass
- Match the plant to climate
 - E.G. Wheatgrass does not do well in the valley, except for tall wheatgrass

Using Ryegrass

- Advantages
 - Superior quality and production
 - A long term solution
- Disadvantages
 - Cost is \sim \$45 an acre (\$0.40/lb.)
 - Chance of failure
 - This can be minimized on perennials
 - Risk can be eliminated with annuals (e.g. soft chess), but may not last as long

Grazing

Phenology work for proper timing

- Use the plants late maturity against it
- Defoliate late to reduce ability to make seed
- Timing is critical
- Weather, soil, etc cause variations in maturity

Grazing attraction - molasses

Effectiveness: Still questionable, but if tubs are moved around to medusahead patches, better grazing of the weed could be achieved

Grazing attraction - nitrogen

- Rates as low as 30
 lbs/acre can attract cattle to graze medusahead during the spring
- Rates of 50+ lbs/acre should be done in the fall to enhance winter growth.

Crude protein from fertilization

Means and 95.0 Percent LSD Intervals

Digestibility increase from fertilization

Means and 95.0 Percent LSD Intervals

Grazing

- It will not reduce medusahead every year
 - Particularly on years with late spring rain
 - Plants recover after grazing and make seed
 - Desirable forages are already dry and cattle need to be shipped to greener, higher quality forage
 - Reliable drinking water supply may be gone earlier in the season
 - It will not get worse on late spring rain years, it's just harder to make an impact so be patient
- On dry years, medusahead reductions can be seen

Mowing

- Mowing acts similar to grazing in eliminating seed production
 - The window for mowing is longer than grazing because the awns on the seed head decrease palatability
 - Late season fire is a concern with mowing
 - Relatively inexpensive, but often infeasible over large scales and on rocky landscapes

Mowing

- Should be done when medusahead is in the boot stage
- However, medusahead individuals that escape mowing will respond with an explosion of seed production, so two mowing events in a single seed individuals.

Approximate costs per acre

- Fertilizer
 - 30 lbs/acre N: \$26.70
 - 60 lbs/acre N: \$53.40
- Roundup: \$15
- Mowing: \$18
- Supplement: \$10
- Forage Replacement: \$34
- Seeding: \$30-1000
- Burning: \$2

IPM approach

- IPM = Integrated pest management
- Best method of control is using different approaches within and across years
- This results in more complete medusahead control + often comes with benefits to desired species and natives
- Single treatment applications will fail for long-term control

Overview

Medusahead background Invasion dynamics

Control

Current Research

Whats new in medusahead research?

Lots of research is being conducted to investigate novel medusahead control and eradication. Much of it is occurring through the UC system and UCCE!

Control review

Overall conclusions

- Current methods are not adequate for long term medusahead control
- Seeding might be a particularly useful avenue for medusahead control

Patch grazing with low-moisture supplement

Medusahead cover increased less in grazed than in ungrazed areas.

Mowing – one project

Mowing two years in a row, while medusahead is in the boot stage.

Medusahed reduced from 50 to 5% cover

Medusahead seed production reduced by almost 90%

Mowing – another project

Mowing in the boot stage in oak and grassland plots

Medusahead cover reduced by 75% but seed production only reduced by 40%

Oak tree maintenance can help isolate medusahead patches and reduce overall cover

Best management approaches

- Burn in year 1 (to reduce seed production and get rid of thatch); till and seed with desired species in year 2; follow up as needed in year 3 and beyond
- Spray with roundup late in the season
 (~\$4/acre) and then seed in the fall of year 1;
 follow up as needed

Just a reminder....

 Cooperative extension's role is to help you get where you want to go, not where we think you should go

One size does not fit all

- We test the tools
- IPM approach

Useful information

California invasive plant council: http://www.cal-ipc.org/

UC Integrated Pest Management Program:

http://www.ipm.ucdavis.edu/index.html

Invasive Plant News: http://techlinenews.com/

Research Gate: https://www.researchgate.net

USDA:

http://www.invasivespeciesinfo.gov/plants/medusahead.shtml

More information is in this guide! Download for free!!

http://wric.ucdavis.edu

Questions?

Contact your local farm or livestock advisor. Alternatively, you can contact the organizers of this presentation:

Theresa Becchetti (Farm Advisor, San Joaquin + Stanislaus) tabecchetti@ucanr.edu

Josh Davy (Livestock Advisor, Tehama, Glenn + Colusa) jsdavy@ucanr.edu

Elise Gornish (Restoration Ecology Specialist, statewide) egornish@ucdavis.edu